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Abstract. We show analytically that, under certain assumptions, the periodic Anderson model and the
Hubbard model become equivalent within the dynamical mean field theory for quasiparticle weight Z → 0.
A scaling relation is derived which is validated numerically using the numerical renormalization group at
zero temperature and quantum Monte Carlo simulations at finite temperatures. Our results show that the
f-electrons of the half-filled periodic Anderson model with nearest neighbor hybridization get localized
at a finite critical interaction strength Uc, also at zero temperature. This transition is equivalent to the
Mott-transition in the Hubbard model.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 71.10.Fd Lattice fermion models
(Hubbard model, etc.) – 71.30.+h Metal-insulator transitions and other electronic transitions

The periodic Anderson model (PAM) and the Hubbard
model (HM) are two of the most fundamental models in
condensed matter physics. Despite the simplicity of their
Hamiltonians, the many body nature of these models re-
sults in a complicated correlated electron problem which
does not allow for an exact solution except for the one-
dimensional HM. Also in infinite dimensions [1,2], where
both models map onto a single impurity Anderson model
with different self-consistency conditions, an exact solu-
tion is only possible numerically. In a recent paper [3],
such a numerical study showed an astonishingly similar
behavior of the two models and, in particular, that the
PAM exhibits a transition similar to the Mott transition
of the HM.

In the present paper we show analytically that under
certain assumptions the infinite dimensional PAM and the
HM become equivalent in the limit of vanishing quasi-
particle weight Z. These assumptions are similar in na-
ture to those employed for the self-consistent projective
method [4] and the linearized dynamical mean-field the-
ory [5]. Thus, the hitherto numerically found similarity
can be understood and the critical Coulomb interaction
Uc for the Mott transition of one model can be deter-
mined from that of the other model. Applying the nu-
merical renormalization group (NRG) at zero temperature
(T = 0) and the quantum Monte Carlo (QMC) technique
at finite T , we investigate to what extent the two underly-
ing assumptions are fulfilled and show, for the first time,
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that the zero temperature PAM with nearest neighbor hy-
bridization has a Mott transition with quasiparticle weight
Z → 0 at a finite Uc, in contrast to the single impurity
Anderson model for which Z → 0 at Uc =∞.

The Hamiltonian of the HM reads

H = −t
∑
〈ij〉σ

f†iσfjσ + U
∑
i

(
nfi↑ −

1
2

)(
nfi↓ −

1
2

)
. (1)

Here, f †iσ and fjσ are creation and annihilation operators
for an electron with spin σ on site i or j, respectively,
nfiσ = f†iσfiσ, 〈ij〉 denotes the sum over nearest neighbors,
and t the hopping amplitude between them. We use the
symbol f for the electrons of the HM since the equivalence
of these and the f -electrons of the PAM will be reported
in this paper. The PAM consists of a band of conducting
electrons (d-electrons) and interacting f -electrons. Both
are coupled via the hybridization Vij :

H = −t
∑
〈ij〉σ

d†iσdjσ +
∑
ijσ

Vij (d†iσfjσ + h.c.)

+ U
∑
i

(
nfi↑ −

1
2

)(
nfi↓ −

1
2

)
. (2)

We only consider the particle-hole symmetric case (µ = 0
in this form for a symmetric non-interacting density of
states (DOS)). In infinite dimensions or with the number
of nearest neighbors Z → ∞, a non-trivial scaling of the
kinetic energy is obtained by t = t∗/

√
Z. In the following,
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t∗ ≡ 1 sets the energy scale. We consider two different
kinds of hybridizations: (i) a nearest neighbor hybridiza-
tion Vij = tdf/

√
Z for nearest neighbors i and j which is

zero otherwise [6] and (ii) an on site hybridization with
Vii = tdf and zero otherwise [7].

Within dynamical mean field theory (DMFT) [1,2],
which becomes exact in infinite dimensions, the HM and
the PAM map onto the same single site problem (which
depends on the Green function Gf , self-energy Σf , T , and
U) but different self-consistency conditions. For the HM
this self-consistency condition at frequency ω is given by

Gf (ω) =
∫

dε
N(ε)

ω −Σf(ω)− ε , (3)

where N(ε) is the non-interacting DOS. In the case of the
PAM, the d-electrons can be integrated out since they en-
ter only quadratically in the Hamiltonian and the effective
action. This results in an effective f -electron problem with
a self-consistency condition that reads

Gf (ω) =
∫

dε
N(ε)

ω −Σf (ω)− t2df ε2/(ω − ε)
(4)

for the PAM with nearest neighbor hybridization and

Gf (ω) =
∫

dε
N(ε)

ω −Σf (ω)− t2df/(ω − ε)
(5)

for the PAM with on site hybridization, where N(ε) is the
free d-electron DOS. Note, that the effective one-particle
potential of the PAM (∝ 1/(ω − ε)) is frequency depen-
dent, i.e., retarded, due to the fact that the electrons may
move from the f -orbitals to the d-band and return at a
later time. The main difference between nearest neighbor
(Eq. (4)) and on site hybridization (Eq. (5)) is that the
former describes metallic f -electrons at U = 0 and within
a Fermi liquid phase while the latter describes Kondo-
insulating f -electrons, i.e., a gapped f -electron quasipar-
ticle peak induced by the hybridization.

The equivalence of the PAM and the HM (at the Mott
transition Z → 0) is shown on the basis of two assump-
tions: (i) that the metallic phase of the f -electrons may
be described by Fermi liquid theory at low energies and
(ii) that the remaining spectral weight of 1 − Z is con-
tained in two Hubbard bands centered around ±U/2 and,
in particular, that differences in the internal structure of
these bands have no influence on the low-energy physics.
Assumption (ii) is certainly only fulfilled approximately
and becomes justified if the high energy features are well
separated from the low-energy features [8]. For a detailed
discussion on this assumption see Section 2 of [5].

With assumption (i) and Z = (1−∂Σf/∂ω|ω=0)−1 the
low-frequency self-consistency condition for the PAM with

nearest neighbor hybridization is given by

Gf (ω) =
∫

dε
ZN(ε)

ω − Zt2df ε2/(ω − ε)
(6)

=
∫

dε
ZN(ε)

ω − ε/2 +
√

1 + 4Zt2dfε/2

√
1 + 4Zt2df + 1

2
√

1 + 4Zt2df

+
ZN(ε)

ω − ε/2−
√

1 + 4Zt2dfε/2

√
1 + 4Zt2df − 1

2
√

1 + 4Zt2df
·

(7)

With the partial fraction decomposition above and a vari-
able transformation y = 1

2Z (1∓
√

1 + 4Zt2df)ε for the two

terms of equation (7) one obtains

Gf (ω) =
∫

dy
ZÑ(y)
ω − Zy , (8)

which is just the low-frequency self-consistency condition
of the HM within a Fermi liquid phase. However, with a
DOS which depends on Z (which is itself a function of U):

Ñ(y)=N

(
2Zy√

1+4Zt2df−1

)√
1+4Zt2df+1√
1+4Zt2df−1

Z√
1+4Zt2df

+N

(
2Zy√

1 + 4Zt2df + 1

)√
1 + 4Zt2df − 1√
1 + 4Zt2df + 1

Z√
1 + 4Zt2df

·

(9)

In the limit Z → 0, Ñ(y) reduces to

Ñ(y) Z→0−→ N(y/t2df )/t2df +O(Z2) (10)

and becomes, thus, independent of Z. Therefore, at
Z → 0, the low energy spectral function of the PAM is
identical to that of the HM with the DOS of equation (10).
With assumption (ii), i.e., that differences in the internal
structure of the Hubbard bands have no impact on the
low-energy physics, the PAM with nearest neighbor hy-
bridization is equivalent to a HM which has the DOS of
the PAM’s d-electrons renormalized by the factor 1/t2df .
Thus, the critical Coulomb interaction and temperature
for the Mott transition of the PAM can be calculated from
that of the HM via

UPAM
c = t2df U

HM
c and TPAM

c = t2df T
HM
c . (11)

For the PAM with on site hybridization, the same pro-
ceeding yields for Z → 0:

Gf (ω) Z→0−→
∫ ∞
−∞

dy
ZN(−t2df/y)
ω − Zy

t2df
y2
· (12)

Again, this is equivalent to the low-frequency self-consis-
tency condition of a HM. While the PAM with nearest
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Fig. 1. Quasiparticle weight Z as a function of U/t2df for the
PAM with nearest neighbor hybridization at a) T = 0 (NRG)
and b) T/t2df = 0.05 (QMC) in comparison to that of the HM.
The QMC data for the HM are partly from [11].

neighbor hybridization (which has metallic f -electrons at
small U) maps to a familiar HM, the PAM with on site
hybridization (which yields a Kondo insulating f -electron
system) maps to a rather unusual HM. If the free d-
electron DOS of the PAM N(ε) is zero for |ε| > D, the
PAM with on site hybridization is equivalent to a HM
with a gap of size t2df/D in the non-interacting DOS. This
reflects the Kondo insulating nature of this model. Fur-
thermore, the DOS of this unusual HM has not a finite
bandwidth but tails decaying like 1/y2 for large ener-
gies. In particular, the standard deviation of this DOS
is infinite. For such a DOS, the linearized DMFT [5] pre-
dicts a Mott transition at Uc = ∞ and for the HM with
Lorentzian DOS (a similar DOS without gap) it is known
that Uc = ∞ [9]. Thus, at T = 0 the analytic argument
suggests Uc =∞ for the PAM with on site hybridization,
in agreement with recent NRG results [10]. Nevertheless,
at finite T the transition is very similar to that of the HM
and the PAM with nearest neighbor hybridization [3]. This
is due to the fact that the vanishing of the quasiparticle
peak at a fixed finite temperature is unaffected by the very
small energy scale present at T = 0.

With the approximative nature of assumption (ii) in
mind we investigate now numerically by NRG [12] and
QMC [13] to what extent the derived scaling relations
hold. To this end, we calculate Z [14] as a function of U/t2df
for a Bethe lattice. The results are presented in Figure 1
which shows that there is indeed a Mott transition Z → 0
at T = 0 in the PAM with nearest neighbor hybridization.
As in the HM [2,15,16], the coexistence of two solutions
is observed at T = 0 (Fig. 1 only contains the metallic
solution obtained with increasing U). Figure 1 validates,
furthermore, that the scaling relation equation (11) holds,
at least approximately, even though, the actual values of
U differ by a factor of 10, both at zero and finite tem-
perature (at finite temperature, T/t2df was kept constant
according to Eq. (11)).
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Fig. 2. Critical value Uc for the Mott transition of the PAM
with nearest neighbor hybridization at a) T = 0 (circles) and
b) T/t2df = 0.05 (squares) compared to t2dfU

HM
c (solid line) at

these temperatures.

From Figure 1 the critical value of U for the Mott tran-
sition, i.e., the vanishing of Z, is determined [17]. The re-
sults are compared to prediction (11) in Figure 2. At small
tdf , the agreement is very good, while there are notable de-
viations at larger tdf . These deviations can be understood
from the spectral functions discussed below.

Figure 3 shows the disappearance of the central quasi-
particle peak at the Mott transition in the f -electron spec-
trum of the PAM with nearest neighbor hybridization. At
the same time, the d-electron spectral function remains
finite at the Fermi energy. Thus, despite the Mott transi-
tion of the f -electrons the overall system remains metallic.
W.r.t. the deviations between Uc and prediction (11), one
observes that at t2df = 0.2 the quasiparticle resonance is
well separated from the high-energy Hubbard bands, while
at tdf = 1 there is additional spectral weight very close to
the quasiparticle resonance. Thus, assumption (ii) is not
a good approximation for larger tdf with the consequence
that the analytic calculation based on assumption (ii) is
less justified and prediction (11) less accurate. This ex-
plains the tdf -dependence of the deviations in Figure 2
which is a priori not clear from the analytic calculation.

Finally, Figure 4 shows a comparison between the f -
spectral functions for the periodic Anderson model with
nearest neighbour hybridization and the Hubbard model.
The density of states for the Hubbard model calculation
is chosen according to equation (10). As expected, the
results show a good agreement in the low-frequency part
whereas the deviations are more pronounced in the high-
frequency regime. The agreement for small ω is, however,
not perfect, even in the limit Z → 0, as the derivation of
equation (10) is only approximate.

In conclusion, we showed analytically that the PAM
becomes equivalent to the HM at the Mott transition
Z → 0 if (i) the low energy physics of both models is
described by Fermi liquid theory and (ii) the high energy
features are Hubbard bands which are well separated
from the low energy quasiparticle peak. This allows
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Fig. 3. Spectral function of the f- and d-electrons for the PAM
with nearest neighbor hybridization at T = 0 (NRG) and at
different values of U close to the Mott transition.

to calculate the critical interaction Uc at which Z → 0
for the PAM from that of the Hubbard model. In par-
ticular, the PAM with on-site hybridization maps to a
Hubbard model with gapped DOS and Lorentzian tails
which suggests Uc = ∞, while the PAM with nearest
neighbor hybridization maps to the Hubbard model with
the same DOS as the d-electron DOS of the PAM. The
latter leads to the scaling relation UPAM

c = t2dfU
HM
c . Nu-

merical calculations employing NRG and QMC yield that
the PAM with nearest neighbor hybridization has indeed
a Mott transition at a finite Uc and that the above scaling
relation is correct for not too large values of tdf . The sim-
ilarity between both models includes the existence of hys-
teresis for the PAM with nearest neighbor hybridization.
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